
Workout Buddy
My first iOS application

Paul Jordan
April 26, 2011 

Paul Jordan Workout Buddy, Page 1

Inception

Why?
My idea for the application came from my enthusiasm for working
out. I really enjoy working out and staying in shape, but it can be
difficult to track all of the food that I eat, and workouts that I do. On
top of that, even if I do write down everything I eat, then it becomes
difficult adding up every category, and calculating percentages of
daily values. This application allows a user to store the things that he
or she eats often, and re-use them again later. It will then calculate
percentages of daily values and report deficiencies in your diet.

Why iOS?
I chose to do an iOS app because of the portability. A lot of iPhone, and
iPod users carry their devices on them for most of the day. It becomes
really convenient to log your diet, and workouts on a device that you
already carry. With the ability to add customized foods and workouts,
you only need to enter information about the food once. Most people
who attempt to track their diets fail because it's a lot of information to
track. They end up only tracking calories, which is great, but there
are many more nutrients, fats, vitamins, and minerals that your body
needs. 

Paul Jordan Workout Buddy, Page 2

Design
The design process
I went with an extremely
agile approach to the design.
My initial design was a hand
drawn sketch of the user
interface. I went through a
couple of different designs
before I found the one I used.
I chose a tab bar interface
which allows the user to
switch between adding
workouts, and foods, very
easily. I designed all of the
images myself in Adobe
Illustrator. I chose a vector
based graphics tool
because I needed to be
able to scale the images
up and down. There are
two resolutions

supported in iOS. The
retina display is much higher therefore I needed two sets of

images. As for under the hood, I went with what would be easiest to
code over what would be the most efficient because of time
constraints, and my lack of experience with iOS, and objective-c.

Under the hood
I have an array of person classes that is read and written to "disk"
before and after each access or change. It's not very efficient I know,
but I needed to have a way for each UIViewController class to access

Paul Jordan Workout Buddy, Page 3

the data, and I didn't feel like I hade enough experience with SQL to
store it in a database and access individual data members. Each view
has a view controller class, and in order for that class to have access
to the data I had to either create some sort of global array, or just
read it in from disk (which in this case is flash memory) on each
access. Each person class has a few describing data members like
name, age, weight, height, and then an array of day objects. Each day
object contains the date for which the object represents, an array of
food objects, and an array of workouts. Each workout contains a
double representing the rate at which calories are burned, and an
integer representing the length of the workout. Each food object
contains "doubles" representing each of the nutritional items listed on
a nutritional facts label, and a string that represents the name of the
food item.  

Paul Jordan Workout Buddy, Page 4

The Learning Curve
Objective-C
Learning objective-c was my biggest hurdle. Thankfully I had plenty
of resources due to the popularity of Apple's App Store.
StackOverflow.com provided a lot of specific technical resources,
while I used the Head First Development: iPhone development book
for the initial development. My final and most helpful resource was on
iTunes University. Stanford University offers
an iOS development course at the
undergraduate level, and for the passed two
years, they recorded the lectures, and posted
both the recordings, and the keynote slides
on iTunes University for free download.

Objective-C is a very interesting language that offers a lot of really
cool functionality. From my research, I've learned that objective-c is
like small talk, a popular message passing language in Europe, mixed
with C++. Objective-C doesn't make direct function calls, instead it

passes a message to an instance of an object. If
data is to be returned it's done the same way.
This is cool, because it decreases
dependencies. A class calling a method of
another class doesn't necessarily have to
know that the method or data member even
exists. Another interesting feature of
Objective-C is it's memory management. Like
C++, the developer must manage his own

memory, but unlike C++, if an object, or instance of a class isn't
specifically retained, it will get released similar to Java. This creates
problems if your trying to access something that has been released,

Paul Jordan Workout Buddy, Page 5

http://stackOverflow.com

but is nice to not have to specifically release memory every time you
allocate it.

Bugs
I learned a lot about debugging during this project. My first major bug
was the applications inability to write to disk. Whenever the program
terminated, all of the information stored would be lost. This was
obviously very frustrating. As mentioned before, I opted to write all of
my data to disk at once. Therefore, all of my data had to be serialized.
In Objective-C, this means that all of my classes had to implement the
NSCoding protocol so that the data could
be encoded, and decoded for the write
and read to and from disk. This wasn't
the problem. The problem was that each
iOS application is allocated it's own space
in the file system, and can only access it's
own directory. This is great for security.
Inside that folder, each application has a
documents directory used for storing
data. The directory string I was using wasn't in the right format to
write to disk. So whenever the application went to save to disk, it
wouldn't return any errors, it would just act like it was written
successfully. After reading multiple example programs I noticed the
way they were telling the program where to write was just a little
differently than the way I was doing it. After fixing my directory
string, everything worked just fine.

My next major bug was in my memory allocation. As I mentioned
earlier, my day class had two arrays, one workout, and one food. After
trying to enter things into this array, I noticed that they weren't
actually being saved. I thought it was in the way I was writing to disk,
but the profiles were saving correctly. Next I thought maybe it was
just because I was doing the user interface incorrectly, and the data

Paul Jordan Workout Buddy, Page 6

just wasn't being displayed, but I checked the array elsewhere, and
noticed that it was empty. So upon reviewing my day class I noticed
that both arrays were being initialized, but there was no memory
allocation being done. Simple fix, but it took several hours to track
that one down. That will definitely be the last time I forget to allocate
memory. 

Paul Jordan Workout Buddy, Page 7

Conclusion
What I learned
This was definitely a learning process. I learned a great deal about not
only Objective-C, but also a lot about design, and higher level
programming in general. Until this project, I had never done a lot of
work with User Interfaces, and it really introduces a whole new
aspect of design. There's a lot more thought that goes into how the
user interacts with the program. For example, I had to use sliders for
integer input to ensure that an actual integer would be returned. A
developer must make sure the application flows well, and that the
user won't struggle finding the functionality that he or she is looking
for. I really enjoyed looking at this side of a program.

I learned a lot about memory management, and tracking down bugs. I
had never really worked on this scale with a language that required
memory management. It was very frustrating seeing Objective-C's
version of a segmentation fault called EXC_BAD_ACCESS when I had
no idea why. It made me appreciate Java's garbage collector a lot
more.

Finally
Overall, I learned a lot about all aspects of working on a slightly larger
project, and I had a lot of fun doing it. On top of everything, I now
have an app for my iPod touch that does something that is very useful
to me.

Paul Jordan Workout Buddy, Page 8

